HR303.825B 303.825MHz One-Port SAW Resonator For Wireless Remote Control

Approved by:

Checked by:

Issued by:

SPECIFICATION

PRODUCT:SAW RESONATORMODEL:HR303.825BQCC4A

HOPE MICROELECTRONICS CO., LIMITED

Tel:+86-755-82973806 Fax:+86-755-82973550 E-mail: <u>sales@hoperf.com</u> http://www.hoperf.com Page 1 of 1

Test Circuit


.....

To 50 Ω

load

The HR303.825B is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic QCC4A case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 303.825 MHz.

1.Package Dimension (QCC4A)

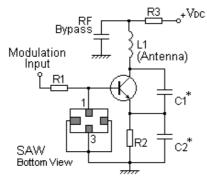
Pin	Configuration			
1	Input / Output			
3	Output / Input			
2/4	Case Ground			

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	1.2	D	1.4
В	0.8	Е	5.0
С	0.5	F	3.5

3.Equivalent LC Model and Test Circuit

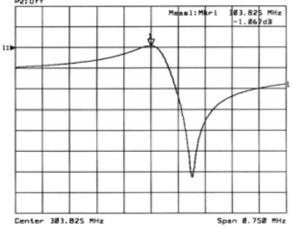
From 50 Ω

source

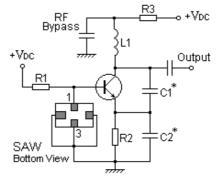

2.Marking

HR303.825B

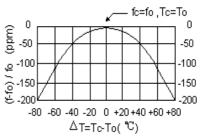
Laser Marking

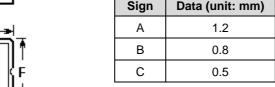

4.Typical Application Circuits

1) Low-Power Transmitter Application



5.Typical Frequency Response


F1:Transmission /H Log Mag P2:Off 5.0 dB/ Ref -1.50 dB


2) Local Oscillator Application

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Equivalent LC Model

 C_{M} L.

Co=Cp+0.05pF* *Case Parasitics

 R_M

0.05pF*

Ср

7.Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	± 30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	
Operating Temperature Range	T _A	-10 to +60	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25)	Absolute Frequency	f _C	303.750		303.900	MHz
	Tolerance from 303.825 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.2	1.8	dB
Quality Factor	Unloaded Q	QU		14,950		
	50 Ω Loaded Q	QL		1,950		
Temperature Stability	Turnover Temperature	T ₀	25		55	
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/ ²
Frequency Aging Absolute Value during the First Year		f _A		10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		15	23	Ω
	Motional Inductance	L _M		117.5302		μH
	Motional Capacitance	См		2.3371		fF
	Shunt Static Capacitance	C ₀	2.25	2.55	2.85	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

C 2003. All Rights Reserved.

- 1. The center frequency, f_{C} , is measured at the minimum IL point with the resonator in the 50 test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3 dB bandwidth, f_c versus T_c , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail sales@hoperf.com.